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EMRIs : Extreme Mass Ratio Inspirals

 EMRI is the orbit of a relatively light object
around a much heavier (by a factor 10,000
or more), that gradually spirals in due to the
emission of gravitational waves.

* They are likely to be found in the centers of
galaxies, where stellar mass black holes
and neutron stars are orbiting a
supermassive black hole.

 EMRIs evolve slowly and complete many
(~10,000) cycles before eventually plunging.

* Their characteristic strain lies in the
frequency band of space-based detectors.




LISA mission

* Originally planned, LISA would have
three identical spacecraft in an orbit
around the Sun. Each spacecraft would
have targeted the other two with lasers,
forming a triangle of light with sides
five million kilometers long.

* NASA and ESA dissolved their decade-
long LISA partnership in March 2011.

* ESA scaled down LISA's triangle,
planned to launch in 2034.

* On 25 January 2024, the LISA Mission
was formally adopted by ESA
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2.5 million km arms
50 million km behind Earth




Mergers in gas-rich environment

e Supermassive binary black holes (SMBBH) merger produces mHz gravitational waves (GW),
detectable by future Laser Interferometer Space Antenna (LISA)

* Such binary systems are usually embedded in an accretion disk environment at the center of
AGNs (GSN 069, RX J1301.9+2747, NGC 5548).

* Recent studies suggest the plasma environment affects the GW emitted from extreme mass
ratio inspiral (EMRI) binary black holes (GW phase shift > 10 radians per year) (Yunes et al.
(2011), Kocsis et al. (2011), Derdzinski et al. (2019), Garg et al. (2022))

* The previous works in the literature assume the artificial thin disk alpha prescription as the
mechanism for the angular momentum transport (Shakura-Sunyaev disk). In their approach,
the a-viscosity is assumed a typical constant value (0.01-0.1).

* In this study, we include the magnetic field evolution to provide the physical mechanism for
the angular momentum transport caused by the Magneto-Rotational Instability (MRI) to
quantify equivalent a-viscosity based on the disk’s evolution. We use the numerical results to
estimate the viscous torque.




General Relativistic MHD simulations

* Describe gas motion in
gravitational field of a black hole

* Use ideal MHD approach (electric
field vanishes)

* No magnetic monopole constraint

* Equation of state for gas (i.e.
adiabatic). Needs inversion
scheme.
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* Discretise equations on a grid and
solve by finite-volume methods
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Initial setup

disk. Density profile from Pe =
Dihinigia et al. (2021).
Polytropic EOS with index 4/3.

Initial configuration for thin ( &y )'—. ( f'lf ﬂ)m
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Viscosity magnitude

* Turbulent viscosity dominated by Maxwell stress
* We compute volume average of ‘effective alpha’ over innermost disk part (~150
r,)
9

* We also check its time average, over second half of evolution
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Comparison of viscous and GW torques

* Gravitational waves
1 g
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Dephasing of GW signal due to accretion disk

For GW frequency of ~ 1 mHz ( primary mass 10° Msu,, mass
ratio g=0.001) ir
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Conclusions

* Magnetic field triggers MRI instability and turns the accretion
disk into MAD state

* From MHD simulations, we measure ‘effective alpha’. Density
weighted volume average varies around 0.1-0.25

* We applied this result to measure the viscous torque from
accretion disk. It can reach few % of GW torque around 100 rg,
for EMRI of mass ratio q=0.001.

* The extra torque from environment appears as phase shift in
GW signal (~ 10 radians in 10° orbits)
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