Viscous torque in turbulent magnetized AGN accretion

disks and its effects on EMRI's gravitational wave

Agnieszka Janiuk

Center for Theoretical Physics Polish Academy of Sciences, Warsaw, Poland

Collaborator: Fatemeh Hossein Nouri (CTP PAS, Milano Univ.)

EMRIs : Extreme Mass Ratio Inspirals

- \cdot EMRI is the orbit of a relatively light object around a much heavier (by a factor 10,000 or more), that gradually spirals in due to the emission of gravitational waves.
- They are likely to be found in the centers of galaxies, where stellar mass black holes and neutron stars are orbiting a supermassive black hole.
- EMRIs evolve slowly and complete many (~10,000) cycles before eventually plunging.
- \cdot Their characteristic strain lies in the frequency band of space-based detectors.

LISA mission

- Originally planned, LISA would have three identical spacecraft in an orbit around the Sun. Each spacecraft would have targeted the other two with lasers, forming a triangle of light with sides five million kilometers long.
- NASA and ESA dissolved their decadelong LISA partnership in March 2011.
- ESA scaled down LISA's triangle, planned to launch in 2034.
- On 25 January 2024, the LISA Mission was formally adopted by ESA

Mergers in gas-rich environment

- Supermassive binary black holes (SMBBH) merger produces mHz gravitational waves (GW), detectable by future Laser Interferometer Space Antenna (LISA)
- Such binary systems are usually embedded in an accretion disk environment at the center of AGNs (GSN 069, RX J1301.9+2747, NGC 5548).
- Recent studies suggest the plasma environment affects the GW emitted from extreme mass ratio inspiral (EMRI) binary black holes (GW phase shift > 10 radians per year) (Yunes et al. (2011), Kocsis et al. (2011), Derdzinski et al. (2019), Garg et al. (2022))
- The previous works in the literature assume the artificial thin disk alpha prescription as the mechanism for the angular momentum transport (Shakura-Sunyaev disk). In their approach, the α -viscosity is assumed a typical constant value (0.01-0.1).
- In this study, we include the magnetic field evolution to provide the physical mechanism for the angular momentum transport caused by the Magneto-Rotational Instability (MRI) to quantify equivalent α-viscosity based on the disk's evolution. We use the numerical results to estimate the viscous torque.

General Relativistic MHD simulations

- **Describe gas motion in gravitational field of a black hole**
- **Use ideal MHD approach (electric field vanishes)**
- **No magnetic monopole constraint**
- **Equation of state for gas (i.e. adiabatic). Needs inversion scheme.**
- **Discretise equations on a grid and solve by finite-volume methods**

 $\partial_t \mathbf{U}(\mathbf{P}) = -\partial_i \mathbf{F}^i(\mathbf{P}) + \mathbf{S}(\mathbf{P})$

 $(\rho u_{\mu})_{;\nu}=0$ $T^{\mu}_{\nu;\mu}=0.$ $T_{(m)}^{\mu\nu} = \rho \xi u^{\mu} u^{\nu} + p g^{\mu\nu}$ $T_{(em)}{}^{\mu\nu} = b^{\kappa} b_{\kappa} u^{\mu} u^{\nu} + \frac{1}{2} b^{\kappa} b_{\kappa} g^{\mu\nu} - b^{\mu} b^{\nu}$ $T^{\mu\nu} = T_{(m)}{}^{\mu\nu} + T_{(em)}{}^{\mu\nu},$

 $F^{* \mu \nu}$ $_{\nu} = 0$. $F^{* \mu \nu} = b^{\mu} u^{\nu} - b^{\nu} u^{\mu}$

https://github.com/agnieszkajaniuk/HARM_COOL

- CPU only; parallelized with MPI or hybrid with Open-MP
- outputs in ASCII or HDF5
- stationary or evolving Kerr metric (Król & Janiuk 2021)
- analytic or tabulated EOS (Janiuk 2019)

5

Initial setup

- Initial configuration for thin disk. Density profile from Dihinigia et al. (2021). Polytropic EOS with index 4/3. Poloidal magnetic field.
- Results are scaled for the central BH mass $10^6 M_{\odot}$ and mass ratio $q=10^{-3}$ (the low-mass secondary BH is not included in hydro simulation)
- 2D models, $1056x528$ cells, r_{out} =1000 r_g evolved for t ~ 60000,
- 3D model with 288x256x96 cells

$$
\rho_e = \left(\frac{\Theta_0}{\kappa}\right)^{\frac{1}{(T-1)}} \left(\frac{f(x)}{x^2}\right)^{\frac{1}{4(T-1)}}.
$$

$$
A_{\phi} = r^{3/4} \frac{m^{5/4}}{(m^2 + \cos^2 \theta)^{5/8}}
$$

$$
\beta = P_{\rm gas,max}/P_{\rm B,max}
$$

Time evolution

Results

Density and magnetic field distribution at final time

Viscosity magnitude

- **Turbulent viscosity dominated by Maxwell stress**
- **We compute volume average of 'effective alpha' over innermost disk part (~150 r g)**

 $\frac{\alpha_{\text{M}} - \beta 10 - m0.1 - a0.7}{\alpha_{\text{D}} - \beta 10 - m0.1 - a0.7}$

30000

40000

50000

60000

• We also check its time average, over second half of evolution

$$
\alpha = \alpha_R + \alpha_M,
$$
\n
$$
\alpha_R \approx \frac{\rho_0 \delta u_r \delta u_\phi \sqrt{g^{\phi \phi}}}{P_{tot}},
$$
\n
$$
\alpha_M \approx -\frac{b_r b_\phi \sqrt{g^{\phi \phi}}}{P_{tot}}.
$$
\nwhere

 σ is the following matrices:\n
$$
\sigma
$$
\nfrom the following equations:

\n
$$
\sigma
$$
\n

Comparison of viscous and GW torques

- **Gravitational waves** $T_{GW} = \frac{1}{2} q M_p r \dot{r}_{GW} \Omega_2,$
- **Viscosity (relativistic)**

$$
T_{\nu,GR} = \dot{M}_{GR} r^2 \Omega_2
$$

$$
\dot{M}_{GR} = 2\pi \left[\frac{\Gamma}{Q} 3r^{1/2} \frac{\partial}{\partial r} \left(r^{1/2} \nu \Sigma_{GR} \frac{\mathcal{D}^2}{C} \right) \right],
$$

$$
\nu = \alpha c_s h
$$

 $M_p = 10^6$ M_o and mass ratio of $q = 0.001$

Dephasing of GW signal due to accretion disk

For GW frequency of \sim 1 mHz (primary mass 10 \rm^6 M_{sun}, mass **ratio q=0.001)** $\dot{r} = \dot{r}_{GW} + 2 \frac{\dot{L}_T}{M a} \sqrt{\frac{r}{GM}} \equiv \dot{r}_{GW} + \dot{r}_T.$

11

$$
\delta \phi = \phi_{vac} - \phi \approx 2\pi \int f_{GW}(r) \frac{\dot{r}_{gas}}{\dot{r}_{GW}^2} dr.
$$
\n
$$
\dot{L}_T = -\alpha \frac{6\pi r^{7/2} c_s(r)^3 \rho(r)}{\sqrt{GM}},
$$
\n
$$
\dot{r}_{GW} = -\frac{64}{5} \frac{(GM)^3}{c^5} \frac{1}{1+q^{-1}} \frac{1}{1+q} \frac{1}{r^3}.
$$
\n
$$
\dot{r}_{GW} = -\frac{64}{5} \frac{(GM)^3}{c^5} \frac{1}{1+q^{-1}} \frac{1}{1+q} \frac{1}{r^3}.
$$
\n
$$
\text{Resulting phase shift in GW signal is about } \sim 10 \text{ radians}
$$

Conclusions

- **Magnetic field triggers MRI instability and turns the accretion disk into MAD state**
- **From MHD simulations, we measure 'effective alpha'. Density weighted volume average varies around 0.1-0.25**
- We applied this result to measure the viscous torque from **accretion disk. It can reach few % of GW torque around 100 rg, for EMRI of mass ratio q=0.001.**
- **The extra torque from environment appears as phase shift in GW signal (~ 10 radians in 10⁵ orbits)**

CL-AGN conference Warsaw, Sept 9-11

Register and submit last-minute (e-poster) contributions until Aug 20th https://cl-agn.cft.edu.pl