Probing Radiation Pressure Instabilities in NS X-ray Binaries using
GLADIS
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Target Systems - X-ray sources showing instabilities in accretion disks
lday bin

GRS 19154105, V1487 Aqgl binsize=24.0h
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Variabilities in light curve/spectra of accretion disks -
Short term and Long term
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Present in accretion disks around AGNs (BH
accretors) and Xray binaries (NS and BH accretors)
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Thermoviscous instabilities in the disk
a) Partial Hydrogen lonization = Long term
variations in spectra (duty cycle of years/months)
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4-10 keV

b) Radiation Pressure instabilities (RPIs) =
Short term variations in spectra (duty cycle of days)

10-20 keV

RPI present mainly in the inner regions of the disk.
where radiation pressure is dominant.

Variabilities in the light curve of BH Xray Source - GRS 1915+105,



Aim - To model RPIs for NS X-ray sources

GLADIS - Global Accretion Disk Instability
Simulation

Januik et al 2002 model explained the RPIs in BH
Xray Binaries, such as GRS 1915-105, was later
modified to include AGNSs.

Our aim is to modify the code to explain the Xray
sources with NS accretors (NS LMXBs) such as
Sco X-1, SWIFT-J1508.

For NS systems, we need to :

a) Inclusion of NS Boundary effect as the
inner boundary of the accretion disk

b) Inclusion of effects of Irradiation from
the central object.
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Short-term variabilities in SWIFT-J1858.6-0814 |,
Source : Sequra et al Nature 2022
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https://www.nature.com/articles/s41586-021-04324-2

Working with the code GLADIS
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e Calculates the radial grid with vertically T R=7 Rechw
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average structure for an alpha-viscosity =
Shakura-Sunayev model of accretion disk 8 ]
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e Calculates a grid in values of local accretion 10-2 ! |
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rate for stationary solutions , plotted as
Stability curves.
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e Calculates the time evolution of all the
physical quantities at every point of the 2oz |
radial grid. B
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e (Can take into account the effect of outflow
from disk & corona (1D + 1D case).
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Stationary solution and time evolution of luminosity.



Stationary solutions - Stability curves of the disk
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Variation of
instability zones of
Accretion disk for
different values of
outflow parameter
A.

! Higher outflow

parameter A =
lower instability
zone

Depends also upon
the type of central
object - BH, NS or
AGN.
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Time evolution - Showing the instability oscillation cycles of the disk
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Time evolution of the disk throughout one outburst cycle, the cycle in T_{eff} vs surface
density(2) plot (Left), Luminosity vs time (Light curve) (Right). ,
colour : rising part to the peak(green) , decaying part (red).



Summary and Work in Progress v
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e Familiarised with the code through stationary solutions
showing instability zone of the disk and the instability
oscillation cycles of the disk.

e Working on including the calculation of viscous flux
for the case of a NS with a boundary layer effect A/Q
Popham&Sunayev ApJ 2001.

e Immediate goal : To verify the variation of physical
quantities (angular & radial velocity, height etc) A/Q NS
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total flux prescription from Popham&Sunayev 2001. % (A o] & (10® oz

Figure : Variation of Q, H, T, p according to
the modified flux prescription.
Source : Popham&Sunayev ApJ 2001
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Vertically average structure of the disk

Standard viscosity prescription  Trp = —9b

issipati 3GMM
Total flux dissipation JF o e £, Fy=C % aPOxH

Viscous flux dissipation ng_F _ aP(— dgl{) . P=P_+P,
2z r
P
Vertical hydrostatic 14p = -0z, — = C3Q%(H2 :
equilibrium pdz p
4
Energy transfer d_T: ~ 3np P, EH=G a3cT
dz 4acT3 50

Where F, is the local energy flux in the
vertical direction.

Vertical coefficients C1, C2 and C3 calculated A/Q Muchotrzeb & Paczynski 1982 & Homa et al 1991



https://articles.adsabs.harvard.edu/pdf/1982AcA....32....1M
https://www.aanda.org/articles/aa/full/2004/07/aa3925/aa3925.html

Stationary solutions of the disk

To obtain the stability curves, the time-independent energy For the NS boundary layer case,
balance equation : Viscous dissipation flx is given by
3 lacT* 1 . _dS -
CiH=-aPQx = Cy— - MT — |, M _ dQ
TR T 2 H 3kp  2mr dr 0" = [QR? — jQ(R,)R2] — .
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is solved, along with the hydrostatic equilibrium equation.

where entropy derivative can be written as : Where we have a different angular

velocity than keplerian, obtained
s P by integration of

T —r = —qagy
adv » . ¥ dQ . >
- p M—d—RR2=MQR2—J.
v
For the local energy flux F ., Fi= Ftot(l —fadv) . ‘
Where f_, is given by ’
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