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Gamma Ray bursts

Rapid, bright flashes of
radiation peaking in the
gamma-ray band

First association of long event:
GRB 980425 and SN 1998bw
(Kuulkarni et al. 1998)
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Complete lightcurve from Clochiatti et al. (2011)

Confirmed
source of
short GRB:
GW170817
(Abbott et al.
2017)
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Relativistic jets paradigm

Jets are common in the Formation of extragalactic jets
Universe from black hole accretion disk

Observed at different mass
scales from accreting black
holes

Need a central engine

Magnetic fields anchored in the FESEgss
accretion disk penetrate black (G
hole’s ergosphere and " seuteer N
mediate extraction of its
rotational energy Spinning black hole twists

open field lines, helping
the jet collimation
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By analogy to pulsar magnetosphere, the field lines
accelerate charged particles (Godreich & Julian

1969; Blandford & Znajek 1977)

Black hole magnetosphere develops from seed
magnetic field by differential rotation of the disk

(Thorne 1986)



Magnetically arrested accretion

In the MAD mode, poloidal magnetic field is accumulating close to BH horizon, due
to accretion (Bisnovatyi-Kogan & Ruzmaikin, 1974; 1976).

Field is prevented from escape as a result of inward pressure. It cannot fall into black hole either, while only
the matter can fall in (Punsly 2001). The velocity of gas in this region is much smaller than free-fall.

» Axisymmetric case: inside magnetospheric radius, Rm, gas accretes as magnetically confined blobs
(Narayan, Ilgumenschev, Abramowicz, 2003).

Non-axisymmetric case: gas forms streams which have to find the way towards back hole
through magnetic reconnections and interchanges
(e.g. lgumenshchev 2008; Tchekhovskoy et al. 2011)
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Jet launching and structure

» The presence of magnetic
fields and black hole rotation
powers the jet acceleration

 Blandford-Znajek process,
efficient if the rotational
frequency of magnetic field is
large wtr. to angular velocity of
the black hole

0.60

Fig from Sapountzis & Janiuk (2019, ApJ)



Toroidal magnetic field, and jet collimation,
3-D simulation
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No two gamma-ray bursts
are the same, as can be
seen from this sample of a
dozen light curves.

Some are short, some are
long, some are weak,
some are strong, some
have more spikes, some
have none, each unlike
the other one.

Credit; NASA



Variable energy extraction from MAD disk

Models for the temporal variability of
long gamma-ray bursts (GRBs) during
the prompt phase (the highly variable
first 100 s or so), were proposed in the
context of a MAD around a black hole

(Lloyd-Ronning, Dolence, Fryer, 2016).
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PDS spectra show power-law slopes
between 1.49-1.65 (Dichiara et al. 2013)



e In our simulations, jet Lorentz factor
Is calculated as the average of p in

time, [ =<p> .

e The Minimum variability Time Scale
(MTS) ~ peak widths at their half
maximum on the py —t plot

e Correlations IN-a and a-MTS are

confirmed. Results scale with black
hole mass: MTS = MTS,_, x GM_ /c?

a - Lorentz factor
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Novel simulations in evolving Kerr metric
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Both black hole mass and
spin evolve due to
accretion of dense mass
with various angular
momentum content during
collapse.

This makes change to the
Kerr metric parameters.

The self-gravity of collapsing
core is an additional
perturbation.
Inhomogeneities found in the
self-gravitating star may
lead to variability.

All these effects will manifest
in the prompt emission of
the GRB



GRB energetics
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Histogram of the inferred energetics for
the GRB sample (Aksulu et al. 2021).

The upper and lower panels show the
histograms for the beaming corrected,
EK-—true and E-true, energy
distributions, respectively.



Source of power to the jets: BZ
process, neutrinos?

53.5‘\||\||\\i\\\\\\|\||\\|\|\

] 53

-1

f<]
o
S
log L, [erg s

T T ‘! } I T
A .|
At (4 a4 M ] 525
A“ 4‘:‘“ M‘v‘“::} M*‘ Aﬂf .

L i \ Ll i I T T | J L1 1 \ L1 1| J [ ‘
F | L ‘ I | 0 0.01 0.02 0.03 0.04 0.05 0.06
0.01 0.02 0.03 time [s]

time [s]

52 L1 |

Neutrino luminosity can be at least
GRB jet luminosity from order of magnitude larger.
Blandford-Znajek A. Janiuk (2019);
Process (MAD-driven)

Most energetic GRBs hard to be
explained with MAD models!



Long GRBs engines: state-of-the-art
simulations

(c) relativistic jet

x [km]

Jet breakout process difficult to
model due to multi-scale problem
and computational complexity
(Gottlieb et al. 2022).

“[a]

Very high resolution 3D simulations
show also importance of plasmoid
reconnection

(Ripperda et al. 2022)



The breakout time is
comparable to the central
engine duration and
possibly a non-negligible
fraction of the total delay
between the gravitational
and gamma-ray signals
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Our new simulations of magnetized collapsar
(AMR framework, stationary Kerr metric)
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The black hole accretion code BHAC (Porth, Olivares et al. 2017; Olivares, Porth,
et al. 2019) now

with realistic initial condition of pre-SN star, and pre-collapse magnetic field
(Urrutia, Olivares, Janiuk, 2024, in prep.)
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Formation of collapsar jet and breakout, depends on the adopted magnetic field
structure (in the star and in the core). Urrutia, et al., in prep.
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Jet launching by BZ process from BH
spinned-up during supernova event

=100 =80 —60 —-40 =20 O 20 40 60 30 100

—40

—100 —80

(T. Kuroda & M. Shibata,
arXiV: 2404.02792)

—100 —80 —-60 —40 —-20 O 20 40 & 80 100
7 [km z [km

10
1000
@ 100
> 10
D

1

0.1

0.01

05 F

v [e]

0t

I T T T R
r [em]

Formation of black hole after proto-neutron star

collapse occurs in an exploding supernova. Poloidal

magnetic fields induce formation of jets from rotating

core (effective spin ~0.5).

The jets decelerate however before they are able to
break out from the star.



GW 170817

NGC 4993 55517a
April 28, 2017 August 17, 2017
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Rapidly fading electromagnetic
transient in the galaxy NGC4993,
was spatially coincident with
GW170817 and a weak short
gamma-ray burst (e.g., Smartt et al.
2017; Zhang et al. 2017, Coulter et
al. 2017)

Double neutron stars formed a
black hole after their merger.
During the inspiral phase,
gravitational waves were
produced

After the merger, gamma-ray
telescopes observed a burst of
energy.

The time delay of 1.7 s may be
associated with formation of
HMNS




Blue and red kilonova components
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Schematic idea of the GW170817
system in the post-merger phase
(Murguia-Berthier et al. 2017).
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kilonova, compared to observational
data for the transient SSS17a,
associated with GW170817

(Kilpatrick et al. 2017).



Short GRB models: Kilonova

NS-NS eject material rich in heavy  cre
. . . ~ | 3 . terglow
radioactive isotopes. iriiood T
medium . =
Can power an electromagnetic signal : Prompt amission
called a kilonova Jet .
(e.g. Li & Paczynski 1998; Tanvir et al. 2013, Berger 2016) -. A\ ! J_HJ’ 5
Dynamical ejecta from compact W ' Blue
. ey KN
binary mergers, I\/Iej~ 0.01 M., wind + ycko ¥
jecta [

can emit about 104°-10*! erg/s in a
timescale of 1 week

Subsequent accretion can provide
bluer emission, if it is not absorbed

by precedent ejecta (ranaka, 2016, Berger
2016, Siegel & Metzger 2017)

GRE central
Engine
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Rapid neutron
capture

Beta decay to

neutron-heavy nucleus new element

Matter is neutronized, Ye = np/(np +n ) <0.5.



Kilonova colors
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Compact binary mergers: state-of-

yyyyyyyyyyyyyyy
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Compact
binary
mergers

Post-merger e

systems
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the-art simulations

NS-NS and NS-BH
(e.g.Korobkin et al.
2012, Rezzolla et al.
2014, Paschalidis et
al. 2015, Shibata,
Baumgarte & Shapiro

2000).

Neutrino-cooled BH accretion
disk with nuclear EOS

(e.g., Janiuk et al. 2017, 2019;
Siegel & Metzger. 2018,
Fernandez et al. 2019)
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HARM= High Accuracy Relativistic MHD
Equation of State of ideal gas with analytic
form was used in the original code (Gammie
et al. 2003).
Fermi gas EOS is computed numerically and
tabulated during simulation with
P(p, T), e(p,T) implemented in
Janiuk et al. (2017; 2019).
— Three paparameter EOS and
neutrino leakage: public release
soon!

Current publicly available code version

https:/Igithub.com/agnieszkajaniuk/
HARM_COOL

Hyperaccretion: rates of 0.01-a
few M. _/s. Nuclear temperatures
and densities

Plasma composed of free n, p,
e+, e— pairs, and He nuclei
Nuclear reactions: electron-
positron capture on nucleons, and
neutron decay (Reddy, Prakash &
Lattimer 1998; Yuan Y.-F. 2005)

Neutrino absorption & scattering:
two-stream approximation (Di
Matteo et al. 2002)
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Outflow from disk: wind

Density t=0.000 Density t=0.295
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Code HARM-COOL (Janiuk, 2019, ApJ, 882, 163)
follows the wind outflow, and computes the trajectories, where mass is ejected in sub-

relativistic particles. Tracers disributed uniformly in rest-mass density inside initial
torus (cf. Wu et al. 2016; Bovard & Rezzola 2017).

Tracers are Lagrangian particles, which store data about density, velocity, and
electron fraction in the outflow. The r-process nucleosynthesis is calculated by
postprocessing of these data, to obtain chemical evolution of the wind.



Disk wind properties
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The disk launch fast wind outflows (v=c ~ 0.11 — 0.23) with a broad range of electron
fraction Ye ~ 0.1 — 0.4. Mass loss via unbound outflows is between 2% and 17% of the
initial disk mass. The details are sensitive to engine parameters: BH spin and
magnetisation of the disk (a=0.9 and a=0.6, for blue/magenta and red/green histograms).
More magnetized disk produce faster outflows. They should contribute to the kilonova

signal, due to radioactive decay of r-process formed isotopes



Nucleosynthesis in disk wind

Heavy elements up to A ~ 200
(incl. Platinum, Gold) are produced
in disk ejecta.
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‘ Rﬁq;ﬂ““ B Nucleosynthesis in disk wind

(Janiuk, 2019, ApJ)

Code SkyNet, provides a nuclear reaction network; Lippuner & Roberts (2017).

Capable to trace the nucleosynthesis in the rapid neutron capture process,
icluding self-heating. Involves large database of over a thousand isotopes.
Takes into account the fission reactions and electron screening.



Synthetic kilonova lightcurves
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We calculated synthetic kilonova Px10% | M20-0.05-20.9
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. 1x10 M6.0-0.14-aR0.6 3
mass ratios and range of black hole &
spin parameters. S x10® |
o E
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We find strong correlation between
the black hole's spin and ejected 1x10% |
mass. ? :
37 ) . | !
Drozda et al. (2022) found that only 110 5 10 5 20
a fraction (~20%) of BHNS binaries t[day]
gain a high BH spin. Nouri, Janiuk & Przerwa

(2023, ApJ, 944, 220)

Our models address the problem how to distinguish between BH-NS and NS-NS
progenitors, eg. by measuring L.C slopes (see Kasen et al. 2015).

Creation of a magnetized and differentially rotating HMNS with different lifetimes
can affect the amount of ejected matter significantly (de Haas et al. 2022).



Jet interactions with pre- and post-
merger ejecta

In BNS merger, the interaction of a

relativistic jet with the ejecta shapes the g
structure of outflow and its radiation
properties. We study this with larger .
scale, AMR-based simulations. Our 2D
simulation is utilizing neutrino-cooled wind

and r-process nucleosynthesis.

9.07e+17

2.70e+11 3.05e+24
]

3D simulations show that jet
centroid oscillates around the axis
of the system, due to
Inhomogeneities encountered in the
propagation (Lazzati et al., 2021)

z/c [s]

Urrutia, Janiuk, Nouri, James
(2024, arXiV: 2401.10094)
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Jet and cocoon recollimation due to
Interactions with disk wind

NSNS2-Jet NSNS2-Cocoon NSNS2-Wind
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The energy distribution att=2s Details in: Urrutia et al. (2024)



Emission simulations

T m0.00}v0.0S, S1_m0.1v0.3

-18f
« Day-timescale emission comes at optical C
. |

wavelengths from lanthanide-free components of £ j»
the ejecta, and is followed by week-long emission 2

with a spectral peak in the near-infrared (NIR). E R
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Monte Carlo radiative transfer software SuperNu _
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ejecta speed of 0.05 ¢ and 0.3 ¢, respectively.

_ Bottom: low-Ye and high-Ye ejecta speed of 0.3 c and
Two-component model scheme 0.05 ¢, respectively.
(Korobkin et al. 2021)


https://iopscience.iop.org/article/10.3847/1538-4357/abe1b5#apjabe1b5bib102

Summary

Jets from MAD disks are highly variable. And correspond to the variability
of emission from GRB jets, quantified by PDS spectra

Broad-band correlations between jets Lorentz factors and variability
timescales from blazars to GRBs are reproduced by numerical
simulations.

In long GRBSs, process of collapse may be affected by changes of BH
mass/spin, the self-gravity of a massive star and by magnetic fields. Jets
launched via BZ process, still hardly break out from the stellar mantle.

In short GRBSs, the r — process nucleosynthesis in magnetically driven
accretion disk outflows can provide additional contribution to the kilonova
emission, apart from the BNS merger ejecta. Amount of this outflow hard
to reconcile with Opticall/IR lightcurves.

Jet interactions with wind should shape its properties and together with
pre-merger dynamical ejecta may explain time-delay between GW and
GRB signals. Collimation of jet and cocoon possible due to MHD driven
winds.
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Cx »1== EuroHPC
dxdxdx = Rk —
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