The large-scale interaction between sGRB jets and disk outflows from NSNS and BHNS mergers

Gerardo Urrutia A. Janiuk, F. Nouri & B. James

Centre for Theoretical Physics, Warsaw, Poland.

gurrutia@cft.edu.pl

Astronomy Institute (CAS) Seminar, Prague, March 2024

Based on arXiv:2401.10094

Gamma-Ray Bursts (prompt emission)

Credits: NASA

Gamma-Ray Bursts (afterglow emission)

Gamma-Ray Bursts (progenitors)

Levan et al. 2014

The origin and evolution of Short GRBs

NS-NS merger Or **BH-NS merger**

Jet Propagation within **Post-merger outflows**

Central Engine

 $r \lesssim 10^{10} \,\mathrm{cm}$

Shell propagation in External ISM

Afterglow Emission

225

Post-merger evolution of the jet

Cartoon of GRB evolution (Stefano Ascenzi)

Small Scales

 $r \lesssim 10^8 \,\mathrm{cm}$

GRMHD simulations

Post-merger evolution of the jet

Cartoon of GRB evolution (Stefano Ascenzi)

Intermediate $10^8 \leq r \leq 10^{11} \, {\rm cm}$ **Scales**

RMHD or **RHD** simulations

Post-merger evolution of the jet

Cartoon of GRB evolution (Stefano Ascenzi)

Very Large Scales $r \gtrsim 10^{16}$ cm RHD simulations or Analytical extrapolations

Lessons from GRB170817A

Mooley et al. 2018

Breschi et al. 2021

GRB170817A: off-axis and structure

Lazzati et al 2018

The Jet structure is modified by the interaction with post-merger winds

Energy distribution (jet structure)

Murguia-Berthier et al., 2021

Looking for self-consistency at intermediate scales

Gottlieb et al 2022

Our Connection between small and large scales

 $10^8 \,\mathrm{cm} < \mathrm{r} < 10^{11} \,\mathrm{cm}$ Large scales **Special Relativistic HD simulation**

$$(\rho u_{\mu})_{;\nu} = 0$$

 $T^{\mu}_{\nu;\mu} = 0$
 $T^{\mu\nu} = T^{\mu\nu}_{m}$

- Mezcal Code (De Colle 2012)
- Adaptive Mesh Refinement
- HLLC solver
- GR effects not considered

Outflow characteristics

 $M_{\rm BH} = 2.65 M_{\odot}$ $M_{\rm disc} = 0.10276 M_{\odot}$ $\dot{M}_{\rm out} = 3.27 \times 10^{-2} M_{\odot} \, {\rm s}^{-1}$ • $\Gamma_i = 7.2$ $t_{\rm i} \propto M_{\rm disk} / \dot{M} \sim 1.57 \, {\rm s}$ $\theta_i = 15^\circ$ $L_i \approx 1.7 \times 10^{50} \, \mathrm{erg/s}$

Initial conditions

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F^i}}{\partial x^i} = 0$$

$$\mathbf{U} = \left(D, m_{j}, \boldsymbol{\tau}\right)$$
$$\mathbf{F}^{\mathbf{i}} = \left(Dv^{i}, m_{j}v^{i} + \boldsymbol{p}\delta_{j}^{i}, \boldsymbol{\tau}v^{i} + \boldsymbol{p}v^{i}\right)$$

$$D = \Gamma \rho$$

$$m_j = Dh \Gamma v_j$$

$$\tau = Dh \Gamma c^2 - p - Dc^2$$

Outflow tracers processed to follow r-process and get the gas pressure

(Lippuner & Roberts 2017)

Wind distributions at $r_{inj} \sim 2 \times 10^8$ [cm]

SkyNet nuclear reaction network (Lippuner & Roberts 2017)

Inversion of Helmholtz equation (Timmes & Arnet 1999)

Note: Abundances of these models are discussed in Nouri

Results of jet interaction

Jet from NSNS merger

Jet from BHNS merger

Results of jet interaction

t > t_{merger}

Disk wind Disk/wind BH Disk Disk Jet

Results of jet interaction

Jet anatomy: each component is distinguished by the velocity

Credits: Salafia & Ghirlanda 2022

Disk wind changes the jet collimation and cocoon lateral expansion

Homologous wind

$$E = \int \Big(\Gamma(\Gamma - 1)\rho \Big)$$

Disk wind

 $pc^2 + p(4\Gamma^2 - 1)) dV$

Energy evolution (jet from NSNS)

We follow the standard afterglow estimation (Sari, Piran & Narayan 1990; Granot & Sari 2002)

- Blandford & Mckee 1976 model
- Synchrotron emission. Magnetic field amplified in the shock front.

Urrutia, De Colle, Murguia-Berthier & Ramirez-Ruiz (2021)

GRB 170817 A

Future distribution of the kilonova

$$(Y1,Y2,Y3,Y4) = \begin{cases} (1,0,0,0) & \text{if} \quad 0.1 < Y_e \le 0.2, \\ (0,1,0,0) & \text{if} \quad 0.2 < Y_e \le 0.3, \\ (0,0,1,0) & \text{if} \quad 0.3 < Y_e \le 0.4, \\ (0,0,0,1) & \text{if} \quad 0.4 < Y_e \le 0.5. \end{cases}$$

Future distribution of the kilonova

Future distribution of the kilonova

Summary and Conclusions

- The r-process effects was considered to recover the gas pressure of the wind.
- We found that the wind produces a jet collimation (pressure effect).
- The interaction of the jet with a homologous wind results in a spread distribution of material and energy.
- The disc outflow modifies substantially the dynamics of the jet, making it an essential component in Short GRB dynamics.

Galactic and Extragalactic X-ray Transients

Theory and observational perspectives

Key topics:

- 1. Quasi periodic eruptions in accreting black holes 2. Tidal disruption events
- 3. Changing activity of supermassive black holes
- 4. Fast variability of Galactic X-ray sources
- 6. Testing General Relativity with supermassive black holes

Warsaw, Poland, September 9 - 11, 2024

Abstract submision deadline: May 1 st

SOC

Vladimir Karas Mikołaj Korzyński (CFT PAN) Alex Markowitz Michal Zajacek

Bozena Czerny (CFT PAN) - Co-Chair Agnieszka Janiuk. (CFT PAN) - Co-Chair Szymon Kozłowski (University of Warsaw) (Astronomical Institute, Prague) (CAMK PAN, Warsaw) Benny Trakhtenbrot (Tel Aviv University) (Masaryk University, Brno)

NATIONAL SCIENCE CENTRE

5. Accretion instabilities and gravitational waves from black hole and neutron star binaries

https://cl-agn.cft.edu.pl

LOC

Gerardo Urrutia (CFT PAN) Ashwani Pandey (CFT PAN) Raj Prince (CFT PAN)

Image credits: chandra.harvard.edu

Děkuji - Dziękuję - Thank you! - ¡Gracias!

Gerardo Urrutia gurrutia@cft.edu.pl

NATIONAL SCIENCE CENTRE