Numerical simulations of Short and Long Gamma Ray bursts

Gerardo Urrutia A. Janiuk, F. Nouri, B. James and H. Olivares

Centre for Theoretical Physics PAS, Warsaw, Poland

gurrutia@cft.edu.pl

KU KDM conference, Zakopane, March 2024

NATIONAL SCIENCE CENTRE

Cosmic Explosions

HH221 by JWST Telescope

Crab Nebula by Hubble Telescope

Short and Long Gamma-Ray Bursts

Levan et al. 2014

Lessons from August 2017

Motley et al. 2018

Breschi et al. 2021

$$\frac{\partial}{\partial t} [\Gamma \rho] + \nabla \cdot [\Gamma \rho \vec{v}] = 0$$
$$\frac{\partial}{\partial t} [\Gamma^2 \rho h \vec{v}] + \nabla \cdot [\Gamma^2 \rho h \vec{v} \vec{v} + \rho I] = 0$$
$$\frac{\partial}{\partial t} [e] + \nabla \cdot [e \vec{v} + \rho \vec{v}] = 0$$
$$e \equiv \Gamma^2 \rho h c^2 - \rho - \Gamma \rho c^2$$

$$\Gamma \equiv \left(1 - \beta^2\right)^{-1/2}$$

Numerical simulations are our virtual laboratory to reproduce extreme conditions

Fluid dynamics simulations

Numerical simulations are our virtual laboratory to reproduce extreme conditions

- Fluid dynamics simulations
 - Supersonic fluids
 - Strong shocks

Numerical simulations are our virtual laboratory to reproduce extreme conditions

- Fluid dynamics simulations
 - Supersonic fluids
 - Strong shocks

- -Harten-Lax-van Leer-Contact; methods
- -Fortran 90
- -MPI

- E.g., Mezcal Code (De Colle et al 2012)
- Adaptative Mesh Refinement (AMR)
- Multiple core runs (MPI)

Refine your area of interest

 $\Delta_{\min x,y,z} \sim 9 \times 10^6 \,\mathrm{cm}$

Urrutia et al. 2022

e.g., Urrutia et al. 2021

Post-merger evolution of the jet is a multi-scale problem

Cartoon of GRB evolution (Stefano Ascenzi)

Small Scales

 $r \lesssim 10^8 \,\mathrm{cm}$

GRMHD simulations

Post-mercor avaluation of the letter a multi-scale problem

,

e.g., Nouri et al. 2023

Our Connection between small and large scales

 $10^8 \,\mathrm{cm} < \mathrm{r} < 10^{11} \,\mathrm{cm}$ Large scales **Special Relativistic HD simulation**

$$(\rho u_{\mu})_{;\nu} = 0$$
$$T^{\mu}_{\nu;\mu} = 0$$

$$T^{\mu\nu} = T_{\rm m}^{\mu\nu}$$

- Mezcal Code (De Colle 2012)
- Adaptive Mesh Refinement
- HLLC solver
- GR effects not considered

Outflow characteristics

 $M_{\rm BH} = 2.65 M_{\odot}$ $M_{\rm disc} = 0.10276 M_{\odot}$ $\dot{M}_{\rm out} = 3.27 \times 10^{-2} M_{\odot} \, {\rm s}^{-1}$ • $\Gamma_{j} = 7.2$ $t_{\rm i} \propto M_{\rm disk} / \dot{M} \sim 1.57 \, {\rm s}$ $\theta_i = 15^\circ$ $L_i \approx 1.7 \times 10^{50} \, \mathrm{erg/s}$

Outflow tracers proceed to follow r-process and get the gas pressure

Post-merger evolution of the jet is a multi-scale problem

Cartoon of GRB evolution (Stefano Ascenzi)

Intermediate $10^8 \leq r \leq 10^{11} \,\mathrm{cm}$

RMHD or RHD simulations

Post-merger evolution of the jet is a multi-scale problem

Urrutia, Jåhiuk, et al. 2024

diate $10^8 \lesssim r \lesssim 10^{11} \,\mathrm{cm}$

HD simulations

Results of jet interaction

Results of jet interaction

Disk wind changes the jet collimation and cocoon lateral expansion

Homologous wind

Disk wind

21

Post-merger evolution of the jet is a multi-scale problem

Very Large Scales $r \gtrsim 10^{16}$ cm RHD simulations or Analytical extrapolations

Cartoon of GRB evolution (Stefano Ascenzi)

Pos

ulti-scale problem

Very Large Scales $r \gtrsim 10^{16} \,\mathrm{cm}$ RHD simulations or Analytical extrapolations

Long GRBs

What element modifies the radiation at large scales?

Exploring the central engine for Long GRBs

z [M]

GWplotter.com

Frequency / Hz

GWplotter.com

GW signal from jet simulations (Urrutia et al. 2023)

$$h_{+} \equiv h_{xx}^{TT} = -h_{yy}^{TT} = \frac{2G}{c^4} \frac{E}{D} \frac{\beta^2 \sin^2 \theta_v}{1 - \beta \cos \theta_v} \cos 2\Phi$$

$$h_{\times} \equiv h_{xy}^{TT} = h_{yx}^{TT} = \frac{2G}{c^4} \frac{E}{D} \frac{\beta^2 \sin^2 \theta_v}{1 - \beta \cos \theta_v} \sin 2\Phi$$

Braginskii & Thorne 1987,

Segalis & Ori 2001,

Birnholtz & Piran (2018),

Leiderschneider & Piran 2021

 $\cos \theta_v = \hat{n} \cdot \hat{\beta} = (\beta_R \sin \theta_{\text{obs}} \cos \phi + \beta_z \cos \theta_{\text{obs}})/\beta$

Sensitivity curves from Moore et al. 2014 Our jet model from Urrutia et al. 2022

$E = 10^{52} \,\mathrm{erg} \quad D = 1 \,\mathrm{Mpc}$

Detectability

 $h \propto$

High resolution 3D simulation

Gottlieb et al. 2023

 $h \approx 10^{-22} \frac{40 \text{ Mpc}}{D} \frac{E}{10^{53} \text{ erg}}$ $E_{\text{cocoon}} = 10^{52} - 10^{53} \text{ erg}$

 $\Delta t \propto 10^{-4} \, \mathrm{s}$ (Temporal resolution)

Storage ~ Petabytes

Our Currently methodology

Jet dynamics (simulations)

New methodology

New implementation Jet dynamics (simulations) + GW signals

Post-processing (GW signals)

Detectability

Detectability

Sotorage ~ TB Computational time ~ 8000 h Post-processing ~ 100 h

Sotorage ~ GB Computational time: 120 000 h

Tests with the new numerical setup

Old numerical setup

Conclusions

- Astrophysical models need to be improved due to the information obtained by a new generation of telescopes and GW detectors.
- scale, modifies predictions and probably reduces the degree of degeneracy.
- Predictions for multi-messenger astronomy.
- open the possibility to run more models.

Simulations	# Models	# Tests	# Simulations	Time per each simulation (hr)	# cpus	Time for tests (hr)	Time of simulations (hr)	Total hours
3D simulations of Long GRBs	10	5	10	360	120	1,920	432,000	433,920
Gravitational waves by GRBs	10	10	10	360	120	3,720	432,000	435,720
Post Processing Radiation			20	36	1		720	720
Post Processing 3D			20	122	1		2,440	2,440
Total				34		5,640	867,160	872,800

Self-consistency with the central engine modifies substantially the propagation at a large

High-cost simulations are modified strategically to reduce computational time or storage and

Dziękuję - Thank you! - ¡Gracias!

Gerardo Urrutia gurrutia@cft.edu.pl

NATIONAL SCIENCE CENTRE

Galactic and Extragalactic X-ray Transients

Theory and observational perspectives

Key topics:

- 1. Quasi periodic eruptions in accreting black holes 2. Tidal disruption events
- 3. Changing activity of supermassive black holes
- 4. Fast variability of Galactic X-ray sources
- 6. Testing General Relativity with supermassive black holes

Warsaw, Poland, September 9 - 11, 2024

Abstract submision deadline: May 1 st

SOC

Vladimir Karas Mikołaj Korzyński (CFT PAN) Alex Markowitz Michal Zajacek

Bozena Czerny (CFT PAN) - Co-Chair Agnieszka Janiuk. (CFT PAN) - Co-Chair Szymon Kozłowski (University of Warsaw) (Astronomical Institute, Prague) (CAMK PAN, Warsaw) Benny Trakhtenbrot (Tel Aviv University) (Masaryk University, Brno)

NATIONAL SCIENCE CENTRE

5. Accretion instabilities and gravitational waves from black hole and neutron star binaries

https://cl-agn.cft.edu.pl

LOC

Gerardo Urrutia (CFT PAN) Ashwani Pandey (CFT PAN) Raj Prince (CFT PAN)

Image credits: chandra.harvard.edu

Afterglow Recipe

- Energy distribution
- Evolution of blast wave
- Standar model synchrotron

$$\Gamma_{\rm sh}^2 = \frac{(17-4k)E}{8\pi\rho(r)c^5t^3} \; .$$

$$B = (32\pi m_p \varepsilon_B n)^{1/2} \Gamma c . \qquad (1.4)$$

The blast wave amplifies the magnetic field of the external media environment, and the magnetic field lines acquire a random orientation. As a consequence, the electron population is randomly oriented with the Lorentz factor $\Gamma \gg 1$. The power spectrum $[\text{Hz}^{-1}\text{s}^{-1}]$ in the observer frame is given by $P(\Gamma_e) = \frac{4}{3}\sigma_T c\Gamma^2 \Gamma_e^2 B^2 / 8\pi$, and the frequency $v(\Gamma_e) = \Gamma \Gamma_e q_e B / 2\pi m_e c$, being Γ the Lorentz factor of the fluid. The spectral characteristic peak is given by,

$$P_{\max} \approx \frac{P(\Gamma_e)}{\nu(\Gamma_e)} = \frac{m_e c^2 \sigma_T}{3q_e} \Gamma B ,$$
 (1.4)

1998; Granot & Sari, 2002). The total number of swept-up electrons in the post shock fluid is $N_e = 4\pi R^3 n/3$. The maximum flux is given by the frequency $v_m = v(\Gamma_m)$. The observed peak flux at distance D from the source is $F_{\nu,\text{max}} = N_e P_{\nu,\text{max}} / 4\pi D^2$. In the fast cooling regime, the spectrum is,

$$F_{\nu} = \begin{cases} (\nu/\nu_c)^{1/3} F_{\nu,\max} & \text{if } \nu_c > \nu , \\ (\nu/\nu_c)^{-1/2} F_{\nu,\max} & \text{if } \nu_m > \nu > \nu_c , \\ (\nu_m/\nu_c)^{-1/2} (\nu/\nu_m)^{-p/2} F_{\nu,\max} & \text{if } \nu > \nu_m . \end{cases}$$
(1.50)

.47)

.48)